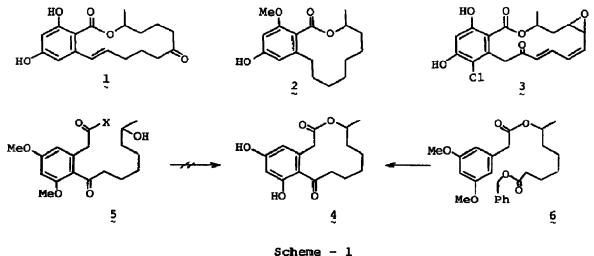
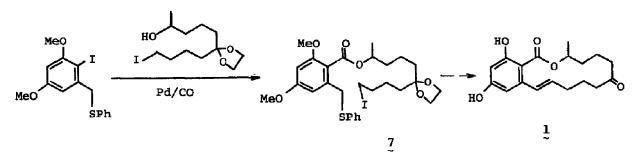
0040-4039/90/1001-3885802.00/0

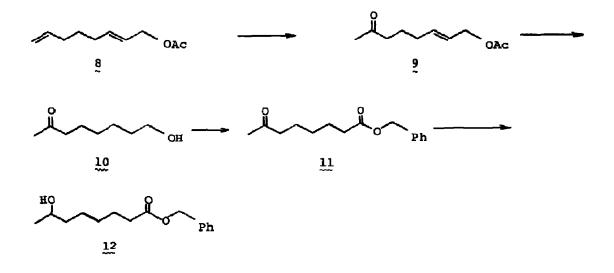

Tetrahedron Letters Vol. 21, pp 3885 - 3888 © Pergamon Press Ltd. 1980. Printed in Great Britain

SYNTHESIS OF (±)-DIMETHYL CURVULARIN BASED ON THE PALLADIUM-CATALYZED CARBONYLATION OF 3,5-DIMETHOXYBENZYL CHLORIDE USING A BUTADIENE TELOMER AS A BUILDING BLOCK

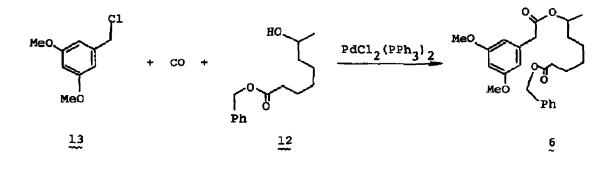
Takashi TAKAHASHI, Hiroshi IKEDA, and Jiro TSUJI* Tokyo Institute of Technology, Meguro, Tokyo 152, JAPAN


Summary: Palladium-catalyzed carbonylation of 3,5-dimethoxybenzyl chloride (13) with benzyl 7-hydroxyoctanoate (12) afforded benzyl 7-(3,5-dimethoxyphenylacetoxy)octanoate (6) in 70% yield, which is the precursor of Curvularin (4). The ester (12) was easily prepared from the butadiene telomer obtained by the palladium-catalyzed reaction of butadiene with acetic acid.

A number of naturally occurring orsellinic acid (2,4-dihydroxy-6-methylbenzoic acid) type macrolides such as Zearalenone <math>(1),¹⁾ Lasiodiplodin (2),²⁾ and Monorden $(3)^{3)}$ are known. Curvularin (4),⁴⁾ a metabolite of various curvularia species, has the structure related to the above macrolides. In an earlier synthesis of Curvularin,^{5,6)} two cyclization methods for the 12-membered lactone have been attempted.⁵⁾ One was the common method of intramolecular esterification and the other was the intramolecular acylation (Scheme - 1). However, several attempts to cyclize the seco acid or seco ester 5 by various methods were unsuccessful. So far the intramolecular acylation of the ester 6 to Curvularin (4) was the only acceptable method.⁶⁾ In this paper we wish to report the improved synthesis of the valuable ester 6 by applying palladiumcatalyzed carbonylation.


cnene -

The palladium-catalyzed carbonylation of aryl and alkenyl iodides and bromides in alcohol or amine gives esters or amides.⁷⁾ As an application of this reaction to the synthesis of Zearalenone (1), we have recently introduced a simple preparative method of the ester 7,⁸⁾ which was smoothly cyclized by intramolecular alkylation.⁹⁾ The subsequent oxidative removal of phenylthic group from the cyclized product afforded Zearalenone (1) (Scheme - 2).



Scheme - 2

We now wish to report the application of this efficient palladium-catalyzed carbonylation to prepare benzyl 7-(3,5-dimethoxyphenylacetoxy)octanoate (6) as a precursor of Curvularin. In addition, we found that the telomer 8,¹⁰⁾ easily prepared by the palladium catalyzed telomerization of butadiene with acetic acid, is an extremely useful building block of carbon chain of 4. The synthesis of benzyl 7-hydroxyoctanoate (12) was carried out by the following sequence of reactions. The terminal olefin of the telomer 8 was oxidized with PdCl₂/CuCl/O₂¹¹⁾ in aqueous DMF to give methyl ketone 9 in 90% yield: NMR (CCl₄) δ 1.93 (s, 3H, $CH_{3}CO_{2}$, 2.01 (s, 3H, $CH_{3}CO$), 2.32 (t, J = 7.2 Hz, 2H, $CH_{2}CO$), 4.18-4.28 (d, J = 7.2 Hz, 6.0 Hz, 2H, CH₂OAc), 5.29-5.70 (m, 2H, clefinic); IR (film) 1740 and 1720 cm⁻¹. The hydrolysis of acetate in aqueous KOH, followed by hydrogenation (Pd/C, H, in EtOH) of olefin gave the alcohol 10 in 85% yield; NMR (CCl_a) δ 2.07 (s, 3H, $CH_{3}CO$, 2.38 (t, J = 6 Hz, 2H, $CH_{2}CO$), 3.23 (bs, 1H, OH), 3.50 (t, J = 6 Hz, 2H, CH_2-O ; IR (film) 3400 and 1710 cm⁻¹. Jones oxidation of the primary alcohol and subsequent esterification of the resulting carboxylic acid with benzyl bromide in the presence of NaH in HMPA at 0°C gave the ester 11 in 80% overall yield: NMR (CCl₄) δ 2.00 (s, 3H, CH₃CO), 2.00-2.48 (m, 4H, CH₂CO), 4.99 (s, 2H, CH_2Ph), 7.24 (s, 5H, Ph); IR (film) 1710 and 1735 cm⁻¹. The ketone was reduced with NaBH, in ethanol to give the alcohol 12 in 90% yield: NMR (CCl₄) δ 1.12 (d, J = 7.0 Hz, 3H, CH₃-CH), 1.20-1.83 (m, 8H, CH₂), 2.09-2.54 (m, 2H, CH₂CO), 3.62-3.80 (m, 1H, CHCOH), 5.07 (s, 2H, CH₂Ph), 7.32 (s, 5H, Ph); IR (film) 3550 and 1735 cm^{-1} .

3,5-Dimethoxybenzyl chloride (13) was prepared from 3,5-dihydroxybenzoic acid in four steps (esterification of acid with CH_2N_2 , methylation of phenol with CH_3I/K_2CO_3 , reduction of ester with LAH and chlorination of benzyl alcohol with CCl_4/PPh_3). Carbonylation of the benzyl chloride 13 was carried out in the following way. A mixture of the benzyl chloride 13 (0.40 mmol), the alcohol 12 (1.34 mmol), NaOAc (0.50 mmol) and PdCl_2(PPh_3)₂ (0.04 mmol) in dry benzene (5 ml) was stirred at 100°C in an autoclave under carbon monoxide (10 atm) for 36 h. The reaction mixture was filtered and the ester 6 was isolated in 70% yield: NMR (CCl_4) δ 1.19 (d, J = 7 Hz, 3H, CH_3 -CH), 1.05-1.80 (m, 8H, CH_2), 1.93-2.39 (m, 2H, CH_2CO), 3.37 (s, 2H, PhCH₂CO), 3.69 (s, 6H, OMe), 4.5-5.0 (m, 1H, -<u>C</u>HOCO-), 5.00 (s, 2H, OCH₂Ph), 6.12-6.41 (m, 3H, aromatic), 7.22 (s, 5H, Ph); IR (film) 1730 cm⁻¹. The conversion of the ester 6 to Curvularin (4) is a known process.⁵

References:

- 1) W. H. Urry, H. L. Wehrmeister, E. B. Hodge, and P. H. Hidy, <u>Tetrahedron</u> Lett., 3109 (1966).
- 2) D. C. Aldridge, S. Galt, D. Giles, and W. B. Turner, <u>J. Chem. Soc., (C)</u>, 1623 (1971).
- 3) a) P. Delmotte and J. Delmotte-Plaquee, Nature, <u>171</u>, 344 (1953).
 - b) R. N. Mirrington, E. Ritchie, C. W. Shoppee, W. C. Taylor, and S. Sternhell, <u>Tetrahedron Lett.</u>, 365 (1964).
- 4) O. C. Musgrave, J. Chem. Soc., 4301 (1956).
- 5) P. M. Baker, B. W. Bycroft, and J. C. Roberts, <u>J. Chem. Soc.</u>, (C), 1913 (1967).
- 6) H. Gerlach, Helv. Chem. Acta, 60, 3039 (1977).
- 7) a) T. Ito, K. Mori, T. Mizoroki, and A. Ozaki, <u>Bull. Chem. Soc. Jpn.</u>, <u>48</u>, 2091 (1975).
 - b) A. Schoenberg, I. Bartoletti, and R. F. Heck, <u>J. Org. Chem.</u>, <u>39</u>, 3318 (1974).
 - c) J. K. Stille and P. K. Wong, <u>J. Org. Chem.</u>, <u>40</u>, 532 (1975).
 - d) H. Hidai, T. Hikita, Y. Wada, Y. Fujikura, and Y. Uchida, <u>Bull. Chem. Soc</u>. <u>Jpn.</u>, <u>48</u>, 2075 (1975).
 - e) A. Schoenberg and R. F. Heck, <u>J. Org. Chem.</u>, <u>39</u>, 3327 (1974).
- 8) T. Takahashi, T. Nagashima, and J. Tsuji, Chem. Lett., 369 (1980).
- 9) T. Takahashi, K. Kasuga, M. Takahashi, and J. Tsuji, <u>J. Am. Chem. Soc.</u>, <u>101</u>, 5072 (1979).
- 10) a) W. E. Walker, R. M. Manyik, and K. E. Atkins, and M. L. Famer, <u>Tetrahedron</u> Lett., 3817 (1970).
 - b) S. Takahashi, T. Shibano, and N. Hagihara, *ibid.*, 2451 (1967).
- 11) J. Tsuji, I. Shimizu, and K. Yamamoto, ibid., 2975 (1976).

(Received in Japan 30 June 1980)